Course Kingdom

- Course -

Data Science with Python Certification Training with Project



Development

9 December, 2020

Start your career as Data Scientist from scratch. Learn Data Science with Python. Predict trends with advanced analytics

$89.00 FREE

Data Science with Python Programming - Course Syllabus


1. Introduction to Data Science

  • Introduction to Data Science

  • Python in Data Science

  • Why is Data Science so Important?

  • Application of Data Science

  • What will you learn in this course?


2. Introduction to Python Programming

  • What is Python Programming?

  • History of Python Programming

  • Features of Python Programming

  • Application of Python Programming

  • Setup of Python Programming

  • Getting started with the first Python program


3. Variables and Data Types

  • What is a variable?

  • Declaration of variable

  • Variable assignment

  • Data types in Python

  • Checking Data type

  • Data types Conversion

  • Python programs for Variables and Data types


4. Python Identifiers, Keywords, Reading Input, Output Formatting

  • What is an Identifier?

  • Keywords

  • Reading Input

  • Taking multiple inputs from user

  • Output Formatting

  • Python end parameter


5. Operators in Python

  • Operators and types of operators

          - Arithmetic Operators

          - Relational Operators

          - Assignment Operators

          - Logical Operators

          - Membership Operators

          - Identity Operators

          - Bitwise Operators

  • Python programs for all types of operators


6. Decision Making

  • Introduction to Decision making

  • Types of decision making statements

  • Introduction, syntax, flowchart and programs for

       - if statement

       - if…else statement

       - nested if

  • elif statement


7. Loops

  • Introduction to Loops

  • Types of loops

       - for loop

       - while loop

       - nested loop

  • Loop Control Statements

  • Break, continue and pass statement

  • Python programs for all types of loops


8. Lists

  • Python Lists

  • Accessing Values in Lists

  • Updating Lists

  • Deleting List Elements

  • Basic List Operations

  • Built-in List Functions and Methods for list


9. Tuples and Dictionary

  • Python Tuple

  • Accessing, Deleting Tuple Elements

  • Basic Tuples Operations

  • Built-in Tuple Functions & methods

  • Difference between List and Tuple

  • Python Dictionary

  • Accessing, Updating, Deleting Dictionary Elements

  • Built-in Functions and Methods for Dictionary


10. Functions and Modules

  • What is a Function?

  • Defining a Function and Calling a Function

  • Ways to write a function

  • Types of functions

  • Anonymous Functions

  • Recursive function

  • What is a module?

  • Creating a module

  • import Statement

  • Locating modules


11. Working with Files

  • Opening and Closing Files

  • The open Function

  • The file Object Attributes

  • The close() Method

  • Reading and Writing Files

  • More Operations on Files


12. Regular Expression

  • What is a Regular Expression?

  • Metacharacters

  • match() function

  • search() function

  • re.match() vs re.search()

  • findall() function

  • split() function

  • sub() function


13. Introduction to Python Data Science Libraries

  • Data Science Libraries

  • Libraries for Data Processing and Modeling

      - Pandas

      - Numpy

      - SciPy

      - Scikit-learn

  • Libraries for Data Visualization

      - Matplotlib

      - Seaborn

      - Plotly


14. Components of Python Ecosystem

  • Components of Python Ecosystem

  • Using Pre-packaged Python Distribution: Anaconda

  • Jupyter Notebook


15. Analysing Data using Numpy and Pandas

  • Analysing Data using Numpy & Pandas

  • What is numpy? Why use numpy?

  • Installation of numpy

  • Examples of numpy

  • What is ‘pandas’?

  • Key features of pandas

  • Python Pandas - Environment Setup

  • Pandas – Data Structure with example

  • Data Analysis using Pandas


16. Data Visualisation with Matplotlib

  • Data Visualisation with Matplotlib

      - What is Data Visualisation?

      - Introduction to Matplotlib

      - Installation of Matplotlib

  • Types of data visualization charts/plots

      - Line chart, Scatter plot

      - Bar chart, Histogram

      - Area Plot, Pie chart

      - Boxplot, Contour plot


17. Three-Dimensional Plotting with Matplotlib

  • Three-Dimensional Plotting with Matplotlib

      - 3D Line Plot

      - 3D Scatter Plot

      - 3D Contour Plot

      - 3D Surface Plot


18. Data Visualisation with Seaborn

  • Introduction to seaborn

  • Seaborn Functionalities

  • Installing seaborn

  • Different categories of plot in Seaborn

  • Exploring Seaborn Plots


19. Introduction to Statistical Analysis

  • What is Statistical Analysis?

  • Introduction to Math and Statistics for Data Science

  • Terminologies in Statistics – Statistics for Data Science

  • Categories in Statistics

  • Correlation

  • Mean, Median, and Mode

  • Quartile


20. Data Science Methodology (Part-1)

Module 1: From Problem to Approach

  • Business Understanding

  • Analytic Approach

Module 2: From Requirements to Collection

  • Data Requirements

  • Data Collection

Module 3: From Understanding to Preparation

  • Data Understanding

  • Data Preparation


21. Data Science Methodology (Part-2)

Module 4: From Modeling to Evaluation

  • Modeling

  • Evaluation

Module 5: From Deployment to Feedback

  • Deployment

  • Feedback

Summary


22. Introduction to Machine Learning and its Types

  • What is a Machine Learning?

  • Need for Machine Learning

  • Application of Machine Learning

  • Types of Machine Learning

      - Supervised learning

      - Unsupervised learning

      - Reinforcement learning


23. Regression Analysis

  • Regression Analysis

  • Linear Regression

  • Implementing Linear Regression

  • Multiple Linear Regression

  • Implementing Multiple Linear Regression

  • Polynomial Regression

  • Implementing Polynomial Regression


24. Classification

  • What is Classification?

  • Classification algorithms

  • Logistic Regression

  • Implementing Logistic Regression

  • Decision Tree

  • Implementing Decision Tree

  • Support Vector Machine (SVM)

  • Implementing SVM


25. Clustering

  • What is Clustering?

  • Clustering Algorithms

  • K-Means Clustering

  • How does K-Means Clustering work?

  • Implementing K-Means Clustering

  • Hierarchical Clustering

  • Agglomerative Hierarchical clustering

  • How does Agglomerative Hierarchical clustering Work?

  • Divisive Hierarchical Clustering

  • Implementation of Agglomerative Hierarchical Clustering


26. Association Rule Learning

  • Association Rule Learning

  • Apriori algorithm

  • Working of Apriori algorithm

  • Implementation of Apriori algorithm


Join us on Telegram



Join our Udemy Courses Telegram Channel



Enroll Now

Subscribe us on Youtube