В течение жизни мы постоянно взаимодействуем с другими людьми. Маленькие дети, пытаясь добиться того, чтобы родители купили понравившуюся конфетку, часто шантажируют родителей своими слезами. Принимая решение заплакать, ребенок рискует — он не знает, как поведут себя папа с мамой. В чуть более взрослом возрасте абитуриенты, выбирающие вуз, принимают сложное решение о том, в какие университеты подать документы. Ошибка может стоить дорого: при неправильной стратегии можно оказаться в слабом университете или вообще остаться без заветного студенческого билета. Окончив вуз, юноши и девушки начинают искать работу. Перед интервью с работодателем они штудируют статьи в интернете о том, что можно и чего нельзя говорить на интервью, — они пытаются найти наилучшую стратегию своего поведения, исходя из ожиданий компании, в которую они устраиваются. Все эти ситуации объединяет то, что решения, которые принимают одни люди, оказывают влияние на других людей. Такие взаимодействия называются стратегическими. Именно их изучает теория игр.
Чтобы проанализировать ту или иную реальную жизненную ситуацию стратегического взаимодействия и найти оптимальный вариант поведения в ней, необходимо сделать две вещи. Во-первых, необходимо формально записать ситуацию на языке теории игр, то есть создать модель (игру). Во-вторых, после того как модель (игра) составлена, ее необходимо решить. Этому мы будем учиться в течение курса. Мы разберем основные виды игр (одновременные и последовательные, с совершенной и несовершенной информацией, коалиционные и некоалиционные), приведем способы их решения и обсудим их на многочисленных примерах.
Курс будет интересен желающим разобраться в том, как конкурируют друг с другом несколько компаний и можно ли гарантированно выиграть в шашки, есть ли смысл угрожать на переговорах и с кем стоит объединяться в коалиции в парламенте.
FAQ
В: Требуется ли предварительная подготовка для прохождения курса?
О: Курс является базовым, поэтому он не требует специальной подготовки. Для его успешного освоения достаточно уверенных знаний курса математики в объеме школьной программы. В одном-двух примерах могут пригодиться знания начал математического анализа (дифференцирование функций одной переменной, необходимое условие экстремума) и знания начал теории вероятностей (понятие математического ожидания случайной величины).
В: Что требуется для успешного окончания курса?
О: Итоговая оценка за курс складывается из результатов 10 оцениваемых тестов. Для успешного окончания курса необходимо дать не менее 80 % правильных ответов на каждый из этих тестов.
Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru